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Scattering Coefficients for Wall Impedance

Changes in Waveguides*

E. L. JOHANSEN ~, MXMBER, IRE

Summary—The Wiener-Hopf tectilque is used to obtain an

exact solution to a two-dimensional scattering problem. In the prob-

lem solved, an incident TE,, mode, traveling from z= – ~ in the

positive z direction, is confined by infinite bounding planes; these
planes have infinite conductivity for z <O and an impedance Zl, for
z> O. The scattering from the @nction at z = O gives rk.e to reflection

and transmission coefficients that are exactly determined. An ap-
proximate solution for the reflection coefficients k also given when the

TE,o mode is incident from the opposite direction. Finally, a table is
presented which lists some transmission and reflection coefficients

for rectangular and circular waveguides with discontinuities in the

wall impedances.

INTRODUCTION

T

HE physical situation considered is illustrated in

Fig. 1. An incident TEIO mode, traveling in the

positive z direction, is confined between infinite

parallel planes at x = ~ a; the planes have infinite con-

ductivity for z< O and an impedance ZI for z >0. When

the impedance of the confining planes is specified as

ZI, the ratio of the tangential electric vector to the

tangential magnetic vector at the surface is 21. These

vectors are assumed to be orthogonal, and Poynting’s

vector points from the center into the confining planes.

The amplitudes of the dominant modes scattered from

the junction z = O are to be determined.
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Fig. l—TElo mode incident in paralle’ -plane waveguide.

It is well known that the Wiener .Hopf method leads

to the solution of the reflection a~ld transmission co-

efficients for the problem considered here. This problem

is quite similar to the duct problem nlentioned b>, Noblel

and solved by Morse and Feshbach.z The method of

solution employed here, however, :loseIy fo~lows that

used by Papadopoulos for a slightly different geometry. s

* Received by the PGMTT, May 11, 1>61; revised manuscript
received, August 28, 1961.

I Radar Laboratory, The University of Michigan, Ann Arbor,
Mich.

1 B. Noble, “Methods Based on the Vi einer-Hopf Technique, ”
Pergamon Press, New York, N. Y., example .1.13, p. 133, and example
3.14. D. 134:1958.

“~. M. iIorse and H. Feshbach, “Meth)ds of Theoretical Phys-
ics, ” McGraw-Hill Book Co., Inc., New Yolk, N. Y., p. 1522; 1953.

3 V. M. Papadopoulo~, “Scattering by a semi-infinite strip of
dominant mode propagation in an infinite -ectangular waveguide, ”
Proc. Cawzb. Phil. Sot., vol. 52, pp. 553–563; July, 1956.

METIIOD OF SOLUTION

The first step in the solution is to determine the

eigenvalues and propagation constants on the two

sides of the junction. Since only TE.O modes are excited

at the junction, we need find these constants only for

TE.O modes. When z< O, the eigenvalue am of the TE.O

mode is

an = (n – 1/2)7r/a, 2 <0, (1)

and the propagation constant Cm is

c. = 4CY.2 – koz, ko = a/c, 2 <0. (2)

In the region z> O, the longitudinal magnetic field of

TE.O mode is related to the transverse electric field,

I&, by one of Llaxwell’s equations

(3)

Since i?,. is cosinusoidal,

the equation satisfied by the eigenvalue P. is

–jiwl
cot /3na = ) Z>o (5)

@w

because the ratio of the tangential electric to the

tangential magnetic vector at the wall is 21. The propa-

gation constants Pn for z >0 are

P,, = ~~n2 – k02, Z>o. (6)

In (4) the plus and minus signs in the exponential term

correspond to propagation in the negative and positive

z direction respectively.

To apply the Wiener-Hopf technique assume that

the transverse electric field is a function of” x and z.

E, = F(*, Z). (7)

Let F(X, s) represent the two-sided Laplace transform

of the transverse electric field

scc

P’(.Y, s) = F(x, z)e–’’dz. (8)
--w
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It is now convenient to make the following definitions:

scc

F+ = F(a, Z)e–SZdZ, F+’ = ;; F+ (9)
o ,“

so

K = F(u, z)e–’’d!z, F-’ = ~- L. (lo)
—m d.v

Since F(x, z) saiisfies the wave equation

the application of the two-sided L,aplace transfornl

yields

Because the transverse electric field is an even function

of x, we assume a solution for F(x, s) in the form

F(x, s) = c(s) Cos H’.x, (13)

m-here s is a complex variable and

To find the transverse electric field we solve for C(S)

using the W7iener-Hopf method, a process involving

anal~%ic continuation and Liouville’s theorem. The aP-

pli cation of the inverse transform then yields EV.

From (13) we obtain

F+ + F– = C(s) COS fi7u (14)

and

Fw’ + F_’ =

Because the walls have

negative, the tangential

z<: O. Thus.

– It”C(s) sin Wa. (15)

infinite conductivity when z is

electric field is zero at x = + a,

F– = 0. (16)

When z>O and x==a,

hence

From (14)–(16) and (18) we find

F_’
c(s) = -— —. . (19)

jwp
— cos Tt’a — W sin H’a
ZI
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When this value of C(s) is substituted in (15), the fol-

lowing equation is obtained relating F+’ and F_’

P+’ F_’
—+– —- = 0. (20)

jq.i yo,u Cos w,,
----- ~os ~~”a Ii’ sin li~a
ZI z,

‘[’he IIext step ill the Wieller-Hopf procedure is the

division of (20) into two parts, each of which is analytic

in a half plane. To accomplish this task the denomina-

tors of (20) are expanded in infinite products containing

the propagation constants.~

“~ cos Wa = ‘~ cos koa H (1 + sIC,,) (1 – s/Cn). (21)
?L=l

jdp

(

ju,u
—– cos Wa — W sin lVa = —-- cos koa — ko sin koa
ZI ZI )

~ il (1 + s/’P.)(l - s/F’n). (22)
.=]

When these iufinite proclucts are substituted in (2o)

and the result is multiplied by

(1 + s/cJ ii (1 + s/J??J (1 – S/cl L),
.=1

we obtain

F+’(l + S/PI) m (1 + s/P.)

“ g ~’~
jq-1 n.

cos koa

The quantity F+ on the left has poles at s = –P.

corresponding to the modes propagating toward the

right away from the junction; these poles are canceled

by the zeros in the infinite product. Thus, the left side

of (23) has poles only at s= —C,,, n,=2, 3, 4, . . . and is

regular for (R(S) > — Gt(Cz) ; (R= real part of). .Similarly,

the right side of (23) is regular for 6?(s) < @(Pl), assum-

ing @,(l’l) >0.

Since there is a common strip of regularity,

– 61(C2) < R(S) < R(PJ, the left side of (22) is the

analytic continuation of the right side, and both sides

arc equal to a polynomial in s, according to Liouville’s

theorem. Due to the left side of (23) being bounded as

s++ ~ , the pol~nolnial contains only a constant term

B. I-Ience

jtip cos koa m (1 + s/en)
F+’ = B II (24)

Z,(l + s/F’,) .=, (1 + s/P,L) “

4 R. E. Collin, “Field Theory of Guided tVaves, ” McGraw-Hill
Bool< Co., Inc., New Yorlc, N. Y., p. 5’75; 1960.
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Next we obtain

B COS Wx

F(*, s) = – (25)

(1+ S/cl) ii (1 + s/Pn)(l — s/en)
n= 1

from (24), (14), (16), (18), and (13).
The transverse electric field EV is obtained by taking

the inverse transform of (25)

So+jm

E.(x, z) = ; s F(X>s)ends,2TJs,–jca

– R(I’J < so <0. (26)
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Fig. 2—Contours for evaluating (26).

The poles of F(.v, s) are sketched in Fig. 2. In order

to evaluate (26) for z <O, the contour is closed at in-

finity in the right half plane, and the enclosed residues

are evaluated. For z >0, the contour is closed in the

left half plane. The residues in the right half plane

yield terms containing cos alxe–clz, cos alxeclg, cos

azxeczz, + . . . corresponding to the incident and re-

flected modes for z< O. The residues at s = – P. corre-

spond to the transmitted modes. The entire field can

then be written

EUI = cos alxe–c’”, incident wave, (27)

.
EUR = ~ R% cos amxec’z, reflected waves, (28)

n=l

cc

Q ~ = ~ T. cos flmxe-p~’, transmitted waves. (29)
n= 1

The coefficients RI and T1 of the dominant modes are

found from the ratios of the residues at s = C’l, and

s = —Pl to the residue at s = — CI:

cl – PI “ (Pn – c1) (Cn + c,)
RI = II (30)

PI + c, ,’=, (Pn + c1) (Cn – c,)

2C’I “ (p. – c1) (Cn + c,)
TI = H (31)

cl+ PI n=, (P,, – P,) (c. + P,) -

The higher order terms T. and R. can be determined in

a similar manner from the residues ats = C. ands = — P%.

One word of caution is necessary here. In order to

evaluate the inverse Laplace transform, we must have

— @t(F’l) < sO< O; therefore, the propagation constant

PI must have a real part which is greater than zero.

Although formulas (30) and (31) were evaluated for

perfectly conducting walls, when z< O, they are also

valid for any wall impedance 20 for z< O provided that

6i(Cl) < 6t(PJ. In this case the propagation constants

C. in the formulas will be those required to satisfy the

boundary condition when z <O. Reflection and trans-

mission coefficients for an incident TE,O mode can also

be obtained when 6i(PJ > R(C,). Here (20) is multiplied

by

(1 + s/c.) H (1 + s/Pn) (1 – s/en)
n,=1

rather than

(1 + s/c,) ~ (1 + s/P.)(1 – s/en).
‘n=]

WAVE INCIDENT FROM z >0

Since the derivation presented above is valid only

when ~(P1) > R( Cl), another solution is required when

the incident wave lies On the Iossy side of the junction.

In this case one assumes that the transverse electric

field is

EU = F(*, z) + A cos ~lxep’z. (32)

The term on the far right represents a wave incident

from z = + m . The function F(x, S) for this case is

[
B+A~~

1
Cos Wx

F(X> s) = –
.=2 S+cn

m

(1+ s/cl) ~ (1 + s/P,,)(l – s/en)

A cos ,L?lacos Wx
(33)

+ (s – PI) cos Wa ;

the a.’s are a series of constants. Again the inverse

transform of F(x, s) is used to find EU. Here the con-

stants 1? and .4 are selected so that the residue at

s = — Cl vanishes in order to eliminate the incident wave

from z< O. The reflection and transmission coefficients

of the dominant modes, RI* and TI*, are the ratios of

the residues at s = – PI and s = Cl to the constant .4.

The exact form of these coefficients is quite lengthy,

but making the approximations Cn>>Cl and Cn>>Pl,

n=2,3,4, ..., these coefficients assume the simple

forms

(34)
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TABLE I

RE*-LECTION AND TRANSMISSION COEFFICIENTS

\
Z,, z>o

Wall Impedance =
O, z<O (Wallsh aveinfinitec onductivity)

Vfrave incident from s = — cc Wave incident from z = + m

“ (Pn – c,) (c. + c1)
.R, = 5=9 ~ ——

A-,TI
RI* ~ —————

P, + c, n=, (P. + cl) (c. – cl) C1a(C1+ PI)

—

Mode and Geometry

TEj o in Rectangular Guide

2 Iossy side walls

VJidth = 2a

TE,6 in Rectangular Guide

1 lossy side wall

Width = a

TE,l in Circular Guide

Radius = u

TIMol in Circular Guide

Radius = a
—

Eigenvalue Equations Eigenvahre Equations_—— _
z < 0, Cm= .~a.2 — ko2 z > O,P. = 4D.2 — hog

——————

cot pna >2321G = [(n — l/2)rr/a
@lJ

nrr tan P,,a = 2!3an= ..—
a ‘-’w

——.———..————. —————————————.——

.lI (ana) = O J(&a) = +’Epd
rw

_—— ——

Jo(~fia) = O
jdIJI (B.a)

Jo(&a) = ——z—
n

—

SIMIL,iR SITUATIONS

The derivations for Rl, TI, RI*, and T/: for the TE1O

mode in parallel-plane waveguide are al~o valid for a

rectangular waveg-uide with two 10SSY side walls. Simi-

lar derivations hold for the Thfol and the TEOl modes in

circular waveguic[e. Table I has the formulas for the

reflection coefficients for these cases. The coefficients

when the wave is incident from the Iossless side are

exact; the others are approximate.

Papadopoulos3 presents the solution for the TE,O

mode in rectangular waveguide in which a semi-infinite

resistive strip is centrally placed. His resu Its could also

be entered in Table I except that he has used a slightly

different approximation for RI* and T1* and that he

appear-s to have some error in signs.

NUMERICAL EXMUPL~

To illustrate the application of these formulas to a

practical situation, the reflection and transmission co-

efficients RI and TI were calculated for the TEIO mode

in rectangular waveguide with one Iossy side wall.

These coefficients are plotted in Fig. 3 as a function of

frequency for values of ZI equal to 20 and 200 !2. Such a

surface resistivity can be obtained by lining the side

wall with a thin resistive card. The values of RI and T]

were obtained by calculating the first seven terms of the

infinite products for the 200 Q resistive sheet, and assum-

ing that the higher terms are all equal to unity. This is a

good assumption since P.>> Cl, C,,>> CI, l’,,> WI, C~>>pI,

fc)r large n. Only two terms were needed for the 20 G!

sheet. A guide \vidth of 0,900” was chosen for these

calculations.
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Fig. 3— \RI I and I T1 I vs frequency for the TEIO mode in rectangular
guide with a thin resistive sheet on one side (j”. = 6560 Me).

CONCLUSION

We have seen that the Wiener-Hopf method is useful

for determining the transmission and reflection co-

efficients caused by a change in wall impedance of a

waveguide. The form of the coefficients is similar for the

TEIO mode in rectangular guide and for the TMO1 and

TEO1 modes in circular guide. These coefficients contain

infinite products; however, only a few of the terms need

be computed in numerical calculations, since the higher

order terms rapidly approach unity.
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