

Scattering Coefficients for Wall Impedance Changes in Waveguides*

E. L. JOHANSEN†, MEMBER, IRE

Summary—The Wiener-Hopf technique is used to obtain an exact solution to a two-dimensional scattering problem. In the problem solved, an incident TE_{10} mode, traveling from $z = -\infty$ in the positive z direction, is confined by infinite bounding planes; these planes have infinite conductivity for $z < 0$ and an impedance Z_1 , for $z > 0$. The scattering from the junction at $z = 0$ gives rise to reflection and transmission coefficients that are exactly determined. An approximate solution for the reflection coefficients is also given when the TE_{10} mode is incident from the opposite direction. Finally, a table is presented which lists some transmission and reflection coefficients for rectangular and circular waveguides with discontinuities in the wall impedances.

INTRODUCTION

THE physical situation considered is illustrated in Fig. 1. An incident TE_{10} mode, traveling in the positive z direction, is confined between infinite parallel planes at $x = \pm a$; the planes have infinite conductivity for $z < 0$ and an impedance Z_1 for $z > 0$. When the impedance of the confining planes is specified as Z_1 , the ratio of the tangential electric vector to the tangential magnetic vector at the surface is Z_1 . These vectors are assumed to be orthogonal, and Poynting's vector points from the center into the confining planes. The amplitudes of the dominant modes scattered from the junction $z = 0$ are to be determined.

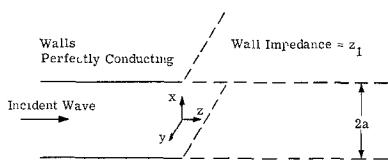


Fig. 1— TE_{10} mode incident in parallel-plane waveguide.

It is well known that the Wiener-Hopf method leads to the solution of the reflection and transmission coefficients for the problem considered here. This problem is quite similar to the duct problem mentioned by Noble¹ and solved by Morse and Feshbach.² The method of solution employed here, however, closely follows that used by Papadopoulos for a slightly different geometry.³

* Received by the PGM TT, May 11, 1961; revised manuscript received, August 28, 1961.

† Radar Laboratory, The University of Michigan, Ann Arbor, Mich.

¹ B. Noble, "Methods Based on the Wiener-Hopf Technique," Pergamon Press, New York, N. Y., example 3.13, p. 133, and example 3.14; 1958.

² P. M. Morse and H. Feshbach, "Methods of Theoretical Physics," McGraw-Hill Book Co., Inc., New York, N. Y., p. 1522; 1953.

³ V. M. Papadopoulos, "Scattering by a semi-infinite strip of dominant mode propagation in an infinite rectangular waveguide," *Proc. Camb. Phil. Soc.*, vol. 52, pp. 553-563; July, 1956.

METHOD OF SOLUTION

The first step in the solution is to determine the eigenvalues and propagation constants on the two sides of the junction. Since only TE_{n0} modes are excited at the junction, we need find these constants only for TE_{n0} modes. When $z < 0$, the eigenvalue α_n of the TE_{n0} mode is

$$\alpha_n = (n - 1/2)\pi/a, \quad z < 0, \quad (1)$$

and the propagation constant C_n is

$$C_n = \sqrt{\alpha_n^2 - k_0^2}, \quad k_0 = \omega/c, \quad z < 0. \quad (2)$$

In the region $z > 0$, the longitudinal magnetic field of TE_{n0} mode is related to the transverse electric field, E_{yn} , by one of Maxwell's equations

$$H_{zn} = \frac{j}{\omega\mu} \frac{\partial E_{yn}}{\partial x}. \quad (3)$$

Since E_{yn} is cosinusoidal,

$$E_{yn} = \cos \beta_n x e^{\pm P_n z}, \quad (4)$$

the equation satisfied by the eigenvalue β_n is

$$\cot \beta_n a = \frac{-j\beta_n Z_1}{\omega\mu}, \quad z > 0 \quad (5)$$

because the ratio of the tangential electric to the tangential magnetic vector at the wall is Z_1 . The propagation constants P_n for $z > 0$ are

$$P_n = \sqrt{\beta_n^2 - k_0^2}, \quad z > 0. \quad (6)$$

In (4) the plus and minus signs in the exponential term correspond to propagation in the negative and positive z direction respectively.

To apply the Wiener-Hopf technique assume that the transverse electric field is a function of x and z .

$$E_y = F(x, z). \quad (7)$$

Let $F(x, s)$ represent the two-sided Laplace transform of the transverse electric field

$$F(x, s) = \int_{-\infty}^{\infty} F(x, z) e^{-sz} dz. \quad (8)$$

It is now convenient to make the following definitions:

$$F_+ = \int_0^\infty F(a, z) e^{-sz} dz, \quad F_+' = \frac{\partial}{\partial z} F_+ \quad (9)$$

$$F_- = \int_{-\infty}^0 F(a, z) e^{-sz} dz, \quad F_-' = \frac{\partial}{\partial z} F_- \quad (10)$$

Since $F(x, z)$ satisfies the wave equation

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2} + k_0^2 \right) F(x, z) = 0, \quad (11)$$

the application of the two-sided Laplace transform yields

$$\left(\frac{\partial^2}{\partial x^2} + s^2 + k_0^2 \right) F(x, s) = 0. \quad (12)$$

Because the transverse electric field is an even function of x , we assume a solution for $F(x, s)$ in the form

$$F(x, s) = C(s) \cos Wx, \quad (13)$$

where s is a complex variable and

$$W = \sqrt{s^2 + k_0^2}.$$

To find the transverse electric field we solve for $C(s)$ using the Wiener-Hopf method, a process involving analytic continuation and Liouville's theorem. The application of the inverse transform then yields E_y .

From (13) we obtain

$$F_+ + F_- = C(s) \cos Wa \quad (14)$$

and

$$F_+' + F_-' = -WC(s) \sin Wa. \quad (15)$$

Because the walls have infinite conductivity when z is negative, the tangential electric field is zero at $x = \pm a$, $z < 0$. Thus,

$$F_- = 0. \quad (16)$$

When $z > 0$ and $x = a$,

$$E_y = Z_1 H_z = \frac{jZ_1}{\omega\mu} \frac{\partial E_y}{\partial x}, \quad (17)$$

hence

$$F_+ = \frac{jZ_1}{\omega\mu} F_+' \quad (18)$$

From (14)–(16) and (18) we find

$$C(s) = \frac{F_-'}{\frac{j\omega\mu}{Z_1} \cos Wa - W \sin Wa}. \quad (19)$$

When this value of $C(s)$ is substituted in (15), the following equation is obtained relating F_+' and F_-'

$$\frac{F_+'}{\frac{j\omega\mu}{Z_1} \cos Wa} + \frac{F_-'}{\frac{j\omega\mu \cos Wa}{Z_1} - W \sin Wa} = 0. \quad (20)$$

The next step in the Wiener-Hopf procedure is the division of (20) into two parts, each of which is analytic in a half plane. To accomplish this task the denominators of (20) are expanded in infinite products containing the propagation constants.⁴

$$\frac{j\omega\mu}{Z_1} \cos Wa = \frac{j\omega\mu}{Z_1} \cos k_0 a \prod_{n=1}^{\infty} (1 + s/C_n)(1 - s/C_n). \quad (21)$$

$$\frac{j\omega\mu}{Z_1} \cos Wa - W \sin Wa = \left(\frac{j\omega\mu}{Z_1} \cos k_0 a - k_0 \sin k_0 a \right) \cdot \prod_{n=1}^{\infty} (1 + s/P_n)(1 - s/P_n). \quad (22)$$

When these infinite products are substituted in (20) and the result is multiplied by

$$(1 + s/C_1) \prod_{n=1}^{\infty} (1 + s/P_n)(1 - s/C_n),$$

we obtain

$$\frac{F_+'(1 + s/P_1)}{\frac{j\omega\mu}{Z_1} \cos k_0 a} \cdot \prod_{n=2}^{\infty} \frac{(1 + s/P_n)}{(1 + s/C_n)} = \frac{-F_-'(1 + s/C_1)}{\left(\frac{j\omega\mu}{Z_1} \cos k_0 a - k_0 \sin k_0 a \right)} \cdot \prod_{n=1}^{\infty} \frac{(1 - s/C_n)}{(1 - s/P_n)}. \quad (23)$$

The quantity F_+ on the left has poles at $s = -P_n$ corresponding to the modes propagating toward the right away from the junction; these poles are canceled by the zeros in the infinite product. Thus, the left side of (23) has poles only at $s = -C_n$, $n = 2, 3, 4, \dots$ and is regular for $\Re(s) > -\Re(C_2)$; (\Re = real part of). Similarly, the right side of (23) is regular for $\Re(s) < \Re(P_1)$, assuming $\Re(P_1) > 0$.

Since there is a common strip of regularity, $-\Re(C_2) < \Re(s) < \Re(P_1)$, the left side of (22) is the analytic continuation of the right side, and both sides are equal to a polynomial in s , according to Liouville's theorem. Due to the left side of (23) being bounded as $s \rightarrow \infty$, the polynomial contains only a constant term B . Hence

$$F_+' = B \frac{j\omega\mu \cos k_0 a}{Z_1(1 + s/P_1)} \prod_{n=2}^{\infty} \frac{(1 + s/C_n)}{(1 + s/P_n)}. \quad (24)$$

⁴ R. E. Collin, "Field Theory of Guided Waves," McGraw-Hill Book Co., Inc., New York, N. Y., p. 575; 1960.

Next we obtain

$$F(x, s) = - \frac{B \cos Wx}{(1 + s/C_1) \prod_{n=1}^{\infty} (1 + s/P_n)(1 - s/C_n)} \quad (25)$$

from (24), (14), (16), (18), and (13).

The transverse electric field E_y is obtained by taking the inverse transform of (25)

$$E_y(x, z) = \frac{1}{2\pi j} \int_{s_0-j\infty}^{s_0+j\infty} F(x, s) e^{sz} ds, \quad -\Re(P_1) < s_0 < 0. \quad (26)$$

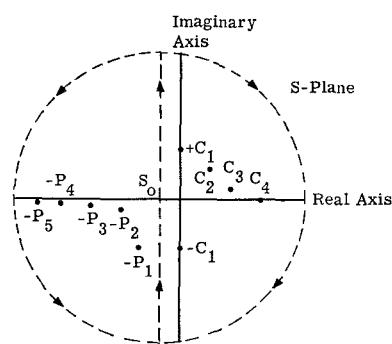


Fig. 2—Contours for evaluating (26).

The poles of $F(x, s)$ are sketched in Fig. 2. In order to evaluate (26) for $z < 0$, the contour is closed at infinity in the right half plane, and the enclosed residues are evaluated. For $z > 0$, the contour is closed in the left half plane. The residues in the right half plane yield terms containing $\cos \alpha_1 x e^{-C_1 z}$, $\cos \alpha_1 x e^{C_1 z}$, $\cos \alpha_2 x e^{C_2 z}$, \dots corresponding to the incident and reflected modes for $z < 0$. The residues at $s = -P_n$ correspond to the transmitted modes. The entire field can then be written

$$E_{yI} = \cos \alpha_1 x e^{-C_1 z}, \text{ incident wave,} \quad (27)$$

$$E_{yR} = \sum_{n=1}^{\infty} R_n \cos \alpha_n x e^{C_n z}, \text{ reflected waves,} \quad (28)$$

$$E_{yT} = \sum_{n=1}^{\infty} T_n \cos \beta_n x e^{-P_n z}, \text{ transmitted waves.} \quad (29)$$

The coefficients R_1 and T_1 of the dominant modes are found from the ratios of the residues at $s = C_1$, and $s = -P_1$ to the residue at $s = -C_1$:

$$R_1 = \frac{C_1 - P_1}{P_1 + C_1} \prod_{n=2}^{\infty} \frac{(P_n - C_1)(C_n + C_1)}{(P_n + C_1)(C_n - C_1)} \quad (30)$$

$$T_1 = \frac{2C_1}{C_1 + P_1} \prod_{n=2}^{\infty} \frac{(P_n - C_1)(C_n + C_1)}{(P_n - P_1)(C_n + P_1)}. \quad (31)$$

The higher order terms T_n and R_n can be determined in a similar manner from the residues at $s = C_n$ and $s = -P_n$.

One word of caution is necessary here. In order to evaluate the inverse Laplace transform, we must have $-\Re(P_1) < s_0 < 0$; therefore, the propagation constant P_1 must have a real part which is greater than zero.

Although formulas (30) and (31) were evaluated for perfectly conducting walls, when $z < 0$, they are also valid for any wall impedance Z_0 for $z < 0$ provided that $\Re(C_1) < \Re(P_1)$. In this case the propagation constants C_n in the formulas will be those required to satisfy the boundary condition when $z < 0$. Reflection and transmission coefficients for an incident TE_{r0} mode can also be obtained when $\Re(P_1) > \Re(C_1)$. Here (20) is multiplied by

$$(1 + s/C_r) \prod_{n=1}^{\infty} (1 + s/P_n)(1 - s/C_n)$$

rather than

$$(1 + s/C_1) \prod_{n=1}^{\infty} (1 + s/P_n)(1 - s/C_n).$$

WAVE INCIDENT FROM $z > 0$

Since the derivation presented above is valid only when $\Re(P_1) > \Re(C_1)$, another solution is required when the incident wave lies on the lossy side of the junction. In this case one assumes that the transverse electric field is

$$E_y = F(x, z) + A \cos \beta_1 x e^{P_1 z}. \quad (32)$$

The term on the far right represents a wave incident from $z = +\infty$. The function $F(x, s)$ for this case is

$$F(x, s) = - \frac{\left[B + A \sum_{n=2}^{\infty} \frac{a_n}{s + C_n} \right] \cos Wx}{(1 + s/C_1) \prod_{n=1}^{\infty} (1 + s/P_n)(1 - s/C_n)} + \frac{A \cos \beta_1 x \cos Wx}{(s - P_1) \cos Wx}; \quad (33)$$

the a_n 's are a series of constants. Again the inverse transform of $F(x, s)$ is used to find E_y . Here the constants B and A are selected so that the residue at $s = -C_1$ vanishes in order to eliminate the incident wave from $z < 0$. The reflection and transmission coefficients of the dominant modes, R_1^* and T_1^* , are the ratios of the residues at $s = -P_1$ and $s = C_1$ to the constant A . The exact form of these coefficients is quite lengthy, but making the approximations $C_n \gg C_1$ and $C_n \gg P_1$, $n = 2, 3, 4, \dots$, these coefficients assume the simple forms

$$R_1^* \cong \frac{\alpha_1 \cos \beta_1 x T_1}{C_1 a (C_1 + P_1)} \quad (34)$$

$$T_1^* \cong \frac{\alpha_1 \cos \beta_1 x}{C_1 a} \left[\frac{R_1}{P_1 + C_1} + \frac{1}{P_1 - C_1} \right]. \quad (35)$$

TABLE I
REFLECTION AND TRANSMISSION COEFFICIENTS

Wall Impedance = $\begin{cases} Z_1, z > 0 \\ 0, z < 0 \text{ (Walls have infinite conductivity)} \end{cases}$

Wave incident from $z = -\infty$

$$R_1 = \frac{C_1 - P_1}{P_1 + C_1} \prod_{n=2}^{\infty} \frac{(P_n - C_1)(C_n + C_1)}{(P_n + C_1)(C_n - C_1)}$$

$$T_1 = \frac{2C_1 K_1}{C_1 + P_1} \prod_{n=2}^{\infty} \frac{(P_n - C_1)(C_n + C_1)}{(P_n - P_1)(C_n + P_1)}$$

Wave incident from $z = +\infty$

$$R_1^* \cong \frac{K_2 T_1}{C_1 a (C_1 + P_1)}$$

$$T_1^* \cong \frac{K_2}{C_1 a} \left[\frac{R_1}{P_1 + C_1} + \frac{1}{P_1 - C_1} \right]$$

Mode and Geometry	Eigenvalue Equations $z < 0, C_n = \sqrt{\alpha_n^2 - k_0^2}$	Eigenvalue Equations $z > 0, P_n = \sqrt{\beta_n^2 - k_0^2}$	K_1	K_2
TE ₁₀ in Rectangular Guide 2 lossy side walls Width = $2a$	$\alpha_n = (n - 1/2)\pi/a$	$\cot \beta_n a = \frac{-j\beta_n Z_1}{\omega \mu}$	1	$\alpha_1 \cos \beta_1 a$
TE ₁₀ in Rectangular Guide 1 lossy side wall Width = a	$\alpha_n = \frac{n\pi}{a}$	$\tan \beta_n a = \frac{j\beta_n Z_1}{\omega \mu}$	$\frac{\alpha_1}{\beta_1}$	$\alpha_1 \sin \beta_1 a$
TE ₀₁ in Circular Guide Radius = a	$J_1(\alpha_n a) = 0$	$J_1(\beta_n a) = + \frac{j\beta_n Z_1 J_0(\beta_n a)}{\omega \mu}$	$\frac{\alpha_1}{\beta_1}$	$-\frac{\alpha_1 J_1(\beta_1 a)}{J_1'(\alpha_1 a)}$
TM ₀₁ in Circular Guide Radius = a	$J_0(\alpha_n a) = 0$	$J_0(\beta_n a) = \frac{j\omega \epsilon Z_1 J_1(\beta_n a)}{\beta_n}$	$\frac{\alpha_1}{\beta_1}$	$\frac{\beta_1 J_0(\beta_1 a)}{J_1(\alpha_1 a)}$

SIMILAR SITUATIONS

The derivations for R_1 , T_1 , R_1^* , and T_1^* for the TE₁₀ mode in parallel-plane waveguide are also valid for a rectangular waveguide with two lossy side walls. Similar derivations hold for the TM₀₁ and the TE₀₁ modes in circular waveguide. Table I has the formulas for the reflection coefficients for these cases. The coefficients when the wave is incident from the lossless side are exact; the others are approximate.

Papadopoulos³ presents the solution for the TE₁₀ mode in rectangular waveguide in which a semi-infinite resistive strip is centrally placed. His results could also be entered in Table I except that he has used a slightly different approximation for R_1^* and T_1^* and that he appears to have some error in signs.

NUMERICAL EXAMPLE

To illustrate the application of these formulas to a practical situation, the reflection and transmission coefficients R_1 and T_1 were calculated for the TE₁₀ mode in rectangular waveguide with one lossy side wall. These coefficients are plotted in Fig. 3 as a function of frequency for values of Z_1 equal to 20 and 200 Ω . Such a surface resistivity can be obtained by lining the side wall with a thin resistive card. The values of R_1 and T_1 were obtained by calculating the first seven terms of the infinite products for the 200 Ω resistive sheet, and assuming that the higher terms are all equal to unity. This is a good assumption since $P_n \gg C_1$, $C_n \gg C_1$, $P_n \gg P_1$, $C_n \gg P_1$, for large n . Only two terms were needed for the 20 Ω sheet. A guide width of 0.900" was chosen for these calculations.

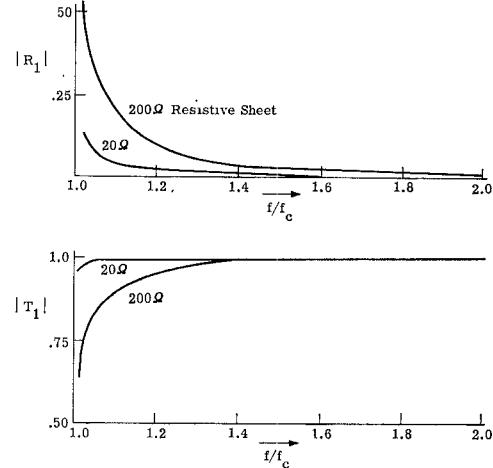


Fig. 3— $|R_1|$ and $|T_1|$ vs frequency for the TE₁₀ mode in rectangular guide with a thin resistive sheet on one side ($f_c = 6560$ Mc).

CONCLUSION

We have seen that the Wiener-Hopf method is useful for determining the transmission and reflection coefficients caused by a change in wall impedance of a waveguide. The form of the coefficients is similar for the TE₁₀ mode in rectangular guide and for the TM₀₁ and TE₀₁ modes in circular guide. These coefficients contain infinite products; however, only a few of the terms need be computed in numerical calculations, since the higher order terms rapidly approach unity.

ACKNOWLEDGMENT

The author wishes to thank C. B. Sharpe for suggesting the topics investigated in this paper.