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Scattering Coefhicients for Wall Impedance
Changes in Waveguides®

E. L. JOHANSEN, MEMBER, IRE

Summary—The Wiener-Hopf technique is used to obtain an
exact solution fo a two-dimensional scattering problem. In the prob-
lem solved, an incident TE;, mode, traveling from z= — < in the
positive z direction, is confined by infinite bounding planes; these
planes have infinite conductivity for z <0 and an impedance Z,, for
z>0. The scattering from the junction at z=0 gives rise to reflection
and transmission coefficients that are exactly determined. An ap-
proximate solution for the reflection coefficients isalso given when the
TE;o mode is incident from the opposite direction. Finally, a table is
presented which lists some transmission and reflection coefficients
for rectangular and circular waveguides with discontinuities in the
wall impedances.

INTRODUCTION

HE physical situation considered is illustrated in

Fig. 1. An incident TE;, mode, traveling in the

positive z direction, is confined between infinite
parallel planes at x= +a; the planes have infinite con-
ductivity for 2<0 and an impedance Z; for 2>>0. When
the impedance of the confining planes is specified as
Z1, the ratio of the tangential electric vector to the
tangential magnetic vector at the surface is Zi. These
vectors are assumed to be orthogonal, and Poynting’s
vector points from the center into the confining planes.
The amplitudes of the dominant modes scattered from
the junction z=0 are to be determined.
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Fig. 1—TE, mode incident in paralle:-plane waveguide.

It is well known that the Wiener -Hopf method leads
to the solution of the reflection and transmission co-
efficients for the problem considered here. This problem
is quite similar to the duct problem nmentioned by Noblel
and solved by Morse and Feshbach.? The method of
solution employed here, however, :losely follows that
used by Papadopoulos for a slightly different geometry.?
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received, August 28, 1961.
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M=zrTHOD OF SOLUTION

The first step in the solution is to determine the
eigenvalues and propagation constants on the two
sides of the junction. Since only TE,; modes are excited
at the junction, we need find these constants only for
TE,; modes, When <0, the eigenvalue «, of the TE,,
mode is

a, = (n— 1/2)w/a, 2 < 0, (1)

and the propagation constant C, is
C,,, = \/an2 - k02, ko = w/c, g < 0 (2)

In the region >0, the longitudinal magnetic field of
TE,, mode is related to the transverse electric field,
E,., by one of Maxwell's equations

 AE
H, =1 2 3)
wu  0x
Since E,, is cosinusoidal,
E,, = cos B,xetPrz (4)
the equation satisfied by the eigenvalue (8, is
cotﬂnaz——!—la >0 (3)
wi

because the ratio of the tangential electric to the
tangential magnetic vector at the wall is Z;. The propa-
gation constants P, for 2> 0 are

Pn = \/ﬁnz - k02; z > 0, (6)
In (4) the plus and minus signs in the exponential term
correspond to propagation in the negative and positive
z direction respectively.

To apply the Wiener-Hopf technique assume that
the transverse electric field is a function of x and z.

E, = F(x, 2). (7

Let F(x, s) represent the two-sided Laplace transform
of the transverse electric field

F(x,s) = wa(x, z)e"4*dz. (8)

)
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It is now convenient to make the following definitions:

o0 O';

F, = f Fa, 5)e*dsz, F/  =—F, 9
0 dr
0 d

F = f Pla, s)eids,  F_'=—F_.  (10)
—o0 ox

Since F(x, 2) satisfies the wave equation

PR X
(1 +—+ ko2> Fx, 5) =0, (11)

ax? 972

the application of the two-sided Laplace transform

vields
62
<6x‘~’

Because the transverse electric field is an even function
of ¥, we assume a solution for F(x, s) in the form

+ st 4 k02> F(x, s) = 0. (12)

F(x, s) = C(s) cos W, (13)

where s is a complex variable and

W=

To find the transverse electric field we solve for C(s)
using the Wiener-Hopf method, a process involving
analytic continuation and Liouville’s theorem. The ap-
plication of the inverse transform then yields E,.

From (13) we obtain

Fy 4+ F_ = C(s) cos Wa 14

and

F. '+ F. = — W(C(s) sin Wa. (15)

Because the walls have infinite conductivity when z is
negative, the tangential electric field is zero at x= +aq,
2<0. Thus,

F_=0. (16)
When >0 and x =g,
iZ1 OF,
E, = Z,H, =2 "1, (17)
wu  0x
hence
YA
1"+ = j‘] ["—f_/. (18)
W
From (14)—(16) and (18) we find
F—“/
Cls) = (19)

I s TWa — W sin Wa
1
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When this value of C(s) is substituted in (15), the fol-
lowing equation is obtained relating F,” and F_’

£y F_’

i jwp cos 7,
JOH cos Wa SRS T Wsin Wa
43) Zl

=0. (20)

The next step in the Wiener-Hopf procedure is the
division of (20) into two parts, each of which is analvtic
in a half plane. To accomplish this task the denomina-
tors of (20) are expanded in infinite products containing
the propagation constants.*

» » 3
T os Wa = j—Z~ cos koa [T (1 4 s/C)(1 = s/C). (21)

1 1 n=1

o o
St cos Wa — Wsin Wa = <jE COs koa — ko sin koa>

LG+ 57200 = 5/P). (22)

When these infinite products are substituted in (20)
and the result is multiplied by

(U + s/ T+ /P = 5/C),

n=1
we obtain
F,/ (14 s/Py) f’I 1+ s/P)
Jwu w2 (1 + s/Cy)
— C08 koa
1
—F_ (14 s/Cy) > (1 —5/C,)
- CH e @
w, = - 13
(J—ﬁ cos koa — ko sin kya ) 1
1 /

The quantity F, on the left has poles at s= —P,
corresponding to the modes propagating toward the
right away from the junction; these poles are canceled
by the zeros in the infinite product. Thus, the left side
of (23) has polesonly at s=—C,, n=2,3,4, - - - and is
regular for ®(s) > — ®R(Cs); (R =real part of). Similarly,
the right side of (23) is regular for ®(s) < ®(Py), assum-
ing ®R(Py)>0.

Since there is a common strip of regularity,
—®(Co) <R(s) <R(Py), the left side of (22) is the
analytic continuation of the right side, and both sides
are equal to a polynomial in s, according to Liouville's
theorem. Due to the left side of (23) being bounded as
s— -+ «, the polynomial contains only a constant term
B. Hence

Joou cos koa

24

Fo=

<> 1+ 5/Ch)
Zi(1 + s/Py) 1L (1+s/P)

+ R, E. Collin, “Field Theory of Guided Waves,” McGraw-Hill
Book Co., Inc., New York, N. Y., p. 575; 1960.
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Next we obtain

B cos Wx (25)

Flx, s) = — =
(A +s/C) TT A+ s/P)A = s/Cn)

n=1

from (24), (14), (16), (18), and (13).
The transverse electric field E, is obtained by taking
the inverse transform of (25)

1 89-+jo0
E,(2,2) = — F(x, s)esds, — ®(P1) < s9 < 0. (26)
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Fig. 2—Contours for evaluating (26).

The poles of F(x, s) are sketched in Fig. 2. In order
to evaluate (26) for 2<0, the contour is closed at in-
finity in the right half plane, and the enclosed residues
are evaluated. For z>0, the contour is closed in the
left half plane. The residues in the right half plane
yield terms containing cos auxe 0¥, cos axef®, cos
axe®®”, -+ - - . corresponding to the incident and re-
flected modes for 2<0. The residues at s= —P,, corre-
spond to the transmitted modes. The entire field can
then be written

E,r = cos awxeC'%, incident wave, (27)
o

Eyr = 2 R, cos axeC, reflected waves, (28)
n=1
0

E,r = E T, cos B,xe~Pr? transmitted waves.  (29)

n=1

The coefficients R; and 7 of the dominant modes are
found from the ratios of the residues at s=(;, and
s= —P; to the residue at s=— (y:

_Gi= P (P = C)(Cat CY)
Pi+ Ciils (Pat C)(Co — C)

2C1 had (Pn - CI) (Cn + Cl)

{1 - (31

T Cit Prass (P — PY(Co+ PY)

(30)

Ry

1

The higher order terms T, and R, can be determined in
a similar manner {from theresidues at s= C, and s = — P,.
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One word of caution is necessary here. In order to
evaluate the inverse Laplace transform, we must have
— ®(P1) <s50<0; therefore, the propagation constant
P, must have a real part which is greater than zero.

Although formulas (30) and (31) were evaluated for
perfectly conducting walls, when z<0, they are also
valid for any wall impedance Z, {or <0 provided that
®R(C1) <R(Py). In this case the propagation constants
C. in the formulas will be those required to satisfy the
boundary condition when z<0. Reflection and trans-
mission coefficients for an incident TE,, mode can also
be obtained when ®(Py) > ®(C,). Here (20) is multiplied
by

A+ s/C) 1 A4+ s/P)A — s/C)
n=1
rather than

(4 5/C) TL A + /P = 5/C).

n=1

WAVE INCIDENT FROM 2>0

Since the derivation presented above is valid only
when ®(P;) > &(Cy), another solution is required when
the incident wave lies on the lossy side of the junction.
In this case one assumes that the transverse electric

field is
E, = F(x, z) + A cos BixeP1=, (32)

The term on the far right represents a wave incident
from z= - . The function F(x, s) for this case is

an

[B+A‘Zj

n=2 § r

:l cos Wx

Flx,s) = — S
(A+s/C) IT 0+ s/P)(A — 5/C)

A cos Bia cos Wx
(s — Py) cos Wa '

(33)

the a,’s are a series of constants. Again the inverse
transform of F(x, s) is used to find E,. Here the con-
stants B and A4 are selected so that the residue at
s = — (1 vanishes in order to eliminate the incident wave
from 2<0. The reflection and transmission coefficients
of the dominant modes, R* and Ty*, are the ratios of
the residues at s= —P; and s=(C; to the constant 4.
The exact form of these coefficients is quite lengthy,
but making the approximations C,>>C; and C.>>P;,
n=2, 3, 4, - - -, these coefficients assume the simple
forms

a3 cos BiaTy

Ry — 707 34
DT (G + Py (34
w1 cos B1a R
g 1[ S ] (35)
Cla P1—|—C1 P1—C1
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TABLE I
REFLECTION AND TRANSMISSION COEFFICIENTS

Zi,5>0
Wall Impedance = g s>

Wave incident from 5 = —

0, 2z < 0 (Walls have infinite conductivity)

Wave incident from g = -} o

_Cl‘_le (Pn—Cl)(Cn+C1) R*N K?,Tl
TP+ G (Pt GG - G YT CalC A+ Py
PGt PG Pa— PG+ P P T Gelht+ G P-G
Mode and Geometry Eigenvalue quft_ii)fl_s__ Eigenvalue quf@is_ e X
2 <0, Cp = Va2 — ko? 2>0,Py = /8,2 — ko?
TEjo in Rectangular Guide 8.7
2 lossy side walls an = (n—1/2)r/a cot Bua = it 1 ay €08 Bio
Width = 2a ok
TE:e in Rectangular Guide ,
. nw JBnZ1 a1 .
1 lossy side wall == tan B¢ = =—— — ay sin Bia
X @ Wi B
Width = «
TEq in Circular Guide 38121 T o Baat) o arJ1(Bra)
Tilawa) =0 Ti(Bua) = S = - =
Radius = a 1(en) 1(Bua) = + wu B1 Ji (aa)
TM in Circular Guide JweZr1J1(Bra) o BT o(B1a)
Tolaua) = 0 Tong) = TN o —
Radius = ¢ o(ec) o(Bnc) B B Ji(ua)
SIMILAR SITUATIONS 50
The derivations for Ry, T4y, Ri*, and T* for the TEy, N
mode in parallel-plane waveguide are also valid for a 25 )
. . . .. 2002 Resistive Sheet
rectangular waveguide with two lossy side walls. Simi-
lar derivations hold for the TMg; and the TEy modes in
circular waveguide. Table I has the formulas for the 10 Lz it __, 16 i 2.0
reflection coefficients for these cases. The coefficients i
when the wave is incident from the lossless side are Lok
. 20Q
exact; the others are approximate. -
Papadopoulos® presents the solution for the TEi, Iyl
mode in rectangular waveguide in which a semi-infinite 5
resistive strip is centrally placed. His results could also
be entered in Table I except that he has used a slightly 5 | 1 , | ‘
different approximation for R;* and 77* and that he 10 1.2 M, 18 18 2.0

appears to have some error in signs.

NUMERICAL EXAMPLE

To illustrate the application of these formulas to a
practical situation, the reflection and transmission co-
efficients Ry and T3 were calculated for the TE;, mode
in rectangular waveguide with one lossy side wall.
These coefficients are plotted in Fig. 3 as a function of
frequency for values of Z; equal to 20 and 200 €. Such a
surface resistivity can be obtained by lining the side
wall with a thin resistive card. The values of Ry and T,
were obtained by calculating the first seven terms of the
infinite products for the 200 (2 resistive sheet, and assum-
ing that the higher terms are all equal to unity. Thisisa
good assumption since P,>>C1, C,>>Cy, P> Py, C>> P,
for large #. Only two terms were needed for the 20 £
sheet. A guide width of 0.900”” was chesen for these
calculations.

Iz

Fig. 3—|R:| and |T1] vs frequency for the TE;y mode in rectangular
guide with a thin resistive sheet on one side (f.=6560 Mc).

CONCLUSION

We have seen that the Wiener-Hopf method is useful
for determining the transmission and reflection co-
efficients caused by a change in wall impedance of a
waveguide. The form of the coefficients is similar for the
TE; mode in rectangular guide and for the TMy and
TE,, modes in circular guide. These coefficients contain
infinite products; however, only a few of the terms need
be computed in numerical calculations, since the higher
order terms rapidly approach unity.
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